果冻传媒

高性能柔性热电材料

发布时间:2019-11-19访问量:1197

报告主题:高性能柔性热电材料
报告时间:2019年11月22日(周五)下午3时30分 
报告地点:果冻传媒 3004

讲座简介:
Thermoelectric materials can directly convert heat into electricity. There is abundant of low-grade heat on earth but most of them are dissipated to ambient environment as waste heat. The conventional thermoelectric materials are inorganic semiconductors and semi-metals. But those inorganic materials have problems of scarce elements, high cost, high toxicity and poor mechanical flexibility. Thus, thermoelectric polymers have been gaining more and more attention because they consists of common elements like C, O, S and H and have merits of low density, low cost, low thermal conductivity and high mechanical flexibility. In particular, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is very promising as the next-generation thermoelectric material because of its addition merit of solution processability. PEDOT:PSS can be dispersed in water and some polar organic solvents, and high-quality PEDOT:PSS films can be readily prepared by solution processing techniques like coating and printing. The main problem for thermoelectric polymers is their low power factor. It is important to develop novel methods to enhance the thermoelectric properties. Here, I will present a couple of methods to significantly enhance the conductivity and the Seebeck coefficient thus the power factor of PEDOT:PSS. The power factor can be >700 W/(m K2), and the ZT value can be as 0.75. In addition, I will present some of our recent works on developing quasi-solid state ionogels with high thermoelectric properties.

讲座人介绍:
 
欧阳建勇 教授,于清华大学化学系、中国科果冻传媒 化学所和日本分子科学果冻传媒 所获得学士、硕士和博士学位。然后在日本北陆先端科学技术大果冻传媒 大学作助理教授和美国加州大学洛杉矶分校作博士后。2006年加入新加坡国立大学材料与科学工程果冻传媒 ,果冻传媒 方向为有机电子、存储器件、纳米材料等方面的果冻传媒 ,在Nature Materials、Nature Nanotechnology、Nature Communications、Advanced Materials、Nano Letters等学术刊物上发表论文180余篇。多篇果冻传媒 成果被MIT Technology Reviews、world journal、azonano.com、Nanotechweb、Journal of Materials Chemistry等报道或评为年度亮点文章。他的主要果冻传媒 成果包括发明了世界上第一个高分子/纳米颗粒存储器和多次刷新可加工导电高分子电导和热电性能的世界记录。获得IUPAC的Distinguished Award for Novel Materials and Their Synthesis,  NUS Young Investigator Award, 北京科学技术奖一等奖, 日中科学技术交流协会天田科学技术奖励奖 和中国科果冻传媒 院长奖学金特别奖(获得此奖的唯一硕士果冻传媒 生,其余获奖者都是博士果冻传媒 生). 平均单篇论文引用>80次。


返回原图
/